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SECTION I

INTRODUCTION

When an electromagnetic wave impinges on intersecting conductors like

the wings and fuselage of an aircraft, currents and charges are induced on

all surfaces with distributions that depend on the shape and dimensions of

the conductors relative to the wavelength and on the angle of arrival and the

polarization of the incident vector field. In general, the surface currents

are determined by Maxwell's equations subject to the boundary condition that

the tangential component of the electric field vanish on all of the (perfect-

ly) conducting surfaces. A usually convenient formulation of the mathemati-

cal boundary-value problem is in terms of integral equations for the compon-

ents of the vector surface density of current. Except in special cases like

the infinitely long cylinder, these equations are coupled.

In order to obtain a qualitative understanding and derive quantitative

information about the distributions of current on intersecting conductors, it

is expedient to study first conductors with simple shapes, specifically, in-

tersecting tubular cylinders for which fairly complete theoretical and exper-

imental information is available over a wide range of electrical lengths and

radii. Furthermore, a cylinder is a good approximation of the fuselage and

its open tubular end resembles an open nose covered by a radome. The winps

are better approximated by flat plates than by tubular cylinders, but no

theory is available for the conducting strip of finite length. Powever, a

theoretical and experimental study of intersecting tubular cylinders can be

correlated with an experimental study of a tubular cylinder intersecting with

a flat plate when the axial and transverse dimensions are comparable. Since

an electromagnetic pulse consists of a spectrum of frequencies and resonances

that yield the greatest amplitudes in the induced currents and charges occur

at specific frequencies, it is essential to obtain detailed information about

the single-frequency behavior of the currents and charges on single and in-

tersecting conductors.

Let one of the intersecting tubes be oriented along the z-axis, the

other along the x-axis with their junction, the origin of rectangular coordi-

nates, at the point of intersection of the axes of the cylinders, as shown in

7



Fig. 1. Instead of allowing the incident plane wave to travel in a completely

arbitrary direction, it is advantageous to have its propagation vector or wave

normal k be perpendicular to the x-axis but with -k at an arbitrary angle 0

with respect to the positive z-axis, as indicated by (a) in Fig. 1. Further-

more, r(i) (which is always in the plane of the wave front and perpendicular

to k) may be rotated by an arbitrary angle b with respect to the yz-plane.

It follows that

E () -E cos 0 sin 0 eikz cos 0 (1a)
z

E -- EM sinip (lb)
x 0

-iwt ejut ( i.(h iedpne

with the time dependence e = e j -i). (The time dependence-it

is usual in the field of scattering and the determination of surface currents

on obstacles. Similarly, ejwt is customary in circuit theory and thin-wire

antenna theory. Each convention will be used in the appropriate context.

With the definition j -i one form is readily converted into the other.) In

Eqs. (la) and (lb), EM is the magnitude of the incident electric field at

the origin of coordinates. The horizontal tube is in the plane of the wave

front and experiences a tangential electric field with the same amplitude and

phase along its entire length; the vertical tube experiences a tangential

electric field that is constant in amplitude but varies linearly and progres-

sively in phase from one end to the other. When ' p 0, the electric field

has no component along the horizontal tube and currents in it are excited en-

tirely by capacitive coupling to the vertical wire and by charges maintained

at the junction. When 0 = Tr/2, the field is normally incident as indicated

by (b) in Fig. 1; with i = 0 the electric field is parallel to the vertical

tube, with n = /2 it is parallel to the horizontal one.

The currents and charges on the conducting surfaces of intersecting

tubes of any radius are governed by integral equations derived from the

boundary condition Et = 0. The continuity of En along the surfaces requires

it to vanish at the bottom of each of the grooves that form the junction con-

tours between the horizontal and vertical tubes. As a consequence, the stir-

face density of charge n (which is proportional to F n ) must also vanish there

and with it the component of current along each groove. This means that the

surface density of current K crosses each groove at right angles.

8
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In order to understand the currents and charges on intersecting cylin-

ders, it is advantageous to review first the axial and transverse distribu-

tions of their surface densities on each tube when isolated, that is, K(,z)

and n(O,z) on the vertical cylinder extending from z = -h to z = h in an E-

polarized field, K(O,x) and n(8,x) on the horizontal tube extending from x =

-Z to x = Z in an H-polarized field. (Note that 8 is the local angular co-

ordinate around either the x or z axis with 8 = 0* at the center of the

shadow in each.) It is convenient to examine tubes with electrical half-

lengths kh (or kZ) in three ranges, viz., kh , kh < -, and kh < 1.

For each range an important special case is the low-frequency or electrically

thin range with ka << 1.

The theoretical determination of the currents and charges on tubular

cylinders with unrestricted length and radius has been accomplished only with

a normally incident plane wave. Since an understanding of the currents and

charges on intersecting cylinders depends on the availability of theoretical

data for isolated cylinders, the case of normal incidence with E-polarization

is considered first. For it the incident electric field is F(i) = E(i)~1 z ,it is parallel to the vertical cylinder that extends from z = -h to z = h'.
The associated magnetic vector is (i) B 1; it lies along the horizontal

cylinder that extends from x = -ZI to x Z 2. The radii of the tubes are

initially assumed to be the same and given by a. With the time dependence
- t M M() iky = Mi ikP cos , (i = i)(y)/c or

( y) = E o e = e , iB (y) = F o (y)
E (y)/Z where c = 3 x 10 1/sec, Z 120n ohms, and 0,8 are cylindrical

coordinates. The propagation vector is k = 1 k. Note that the center of they
illuminated side is at 0 = 180, the center of the shadow at P = 00, and the
shadow boundaries at a = 900 and 270 °. The dimensions of aircraft and the

frequencies in an electromagnetic pulse make electrical radii in the range

0.01 < ka < 2 and arm lengths kh from several wavelengths to very small frac-

tions of a wavelength of interest. Two important ranges of the electrical

radius are ka < 0.1 and ka > 0.1; the first of these has two subranges de-

fined by ka < 0.1, kh > 1 and ka < 0.1, kh < 1.
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SECTION II

THE INFINITELY LONG CYLINDER; kh =

For infinitely long cylinders the currents induced by E-polarized and H-

polarized fields are mutually independent and can be obtained from separate

integral equations. This means that an arbitrarily incident field can be re-

solved into E- and H-polarized components and the currents induced by each

determined separately and then combined. When kh = -, the integral equations

for the currents are obtained from the boundary condition Et = 0 at P = a,t
0 < 8 < 2r, -- < z < -. For E-polarization along the z-axis, Ke(6) - 0 and

K () satisfies the equation:z

,(i) ika cos 6 eT
EzO e + iW 0a f K z ')G(a,6;a',') de' - 0 (2a)

For H-polarization along the x-axis, K x(8) = 0 and K8 (e) satisfies the equa-

tion:

a (i) ika cos e 27r
a [B e - a f K 6(6') [o P, r(P;P,' )p p',- a de' 0

(2b)

In Eqs. (2a,b), G(p,6;p',8') = (i/4)H~1 )(kR) with R = 2 2 - 2p0'

x cos( - 6')] 1 /2 . With EM 1 V/m and with e = 1, m 0; E- 2, m , 0,
z m m

the eigenfunction solutions are:

E-polarization:

Kz(6) - (2/7Zoka) C m cos me/il (ka)z 0 M- 0  m

= A + B cos 6 + C cos 26 + D cos 36 + ... (3)

K s(6) = 0 , (e) 0 (4)

H-polarization:

cos m 1/H (ka)K8 (6) - (2/7wZ ka) C im-l Csme/H~l,(a0 m m

= AH + BH Cos 8 + CH cos 28 + DR cos 36 + *.. (5)

K x() - 0 cn(6) = (i/ka)aK6 (e)/ae

i [ _ . .x



-(i/ka)(BH sin 8 + 2CH sin 28 + ...] (6)

The complex Fourier coefficients A, B, ..., and AP, BH, ..., are functions of

ka. Their numerical values for five values of ka are in table 1. When

ka < 0.1, small argument approximations of the iankel functions give: K z()

& A + BR cos 8; K8 (8) 1A HR + iBPI cos 6 where A = AR + iAI - (2/nZ0 ka) +

{1 - (2i/7r)(Ln(2/ka) + y]} with y = 0.577, BR = -2/Z = -5.30 . 10-3 A/V,

AHR = -iZ = -2.65 x 10-  A/V, and BHI = -2ka/ O . Note that with E-polariza-

tion the rotationally symmetric, zero-order current [K j0 = I /27a = A in-zr z
creases rapidly in amplitude with decreasing ka while *the first-order current

[Kz(8)] Z BR cos 8 = (-2/Zo)cos 8 = -2H i)cos e is independent of ka.
x

[K M()]I consists of equal and opposite axial currents respectively on the
illuminated and shadowed halves of the cylinder. The phase relations are

such that K () is increased on the illuminated side, decreased on the sha-z

dowed side as shown in solid lines in Fig. 2. As ka is increased from 0.1 to

1, the coefficients CI and DR in Eq. (3) become significant and modify the

shape of the curves. With H-polarization, the current with ka < 0.1 consists

predominantly of a rotationally symmetric circulation around the tube given

byR - o - H M as shown in broken lines in Fig. 2. As ka is

increased from 0.1 to 1, the coefficients B. = B R + iBHl CH = C R + iCII ,

and DHR become significant and the shape of the graphs changes from a hori-

zontal line to a curve with a maximum at 8 = 180. Note that when ka < 0.1,

K (8) induced by the E-polarized field with EMi 1 V/m is much greater thanz z (i =
K8 (a) induced by an equal H-polarized field with E = H"i)Zo = IV/m. The

two become comparable when ka > 0.5.

With E-polarization, the zero-order part of Kz (a), viz., [Kz] 0 - A, is

rotationally symmetric, the first-order part [K z(8)] = B cos 8 is equal in

magnitude and opposite in direction on the illuminated and shadowed halves as

in a balanced, two-conductor transmission line; the second-order part repre-

sented by C cos 28 is equal and codirectional in the illuminated and shadowed

quadrants centered respectively at 8 = 1800 and 00, equal and oppositely di-

rected in the quadrants centered at 8 = 90* and 270* as in a balanced, four-

conductor line. With H-polarization, the zero-order part of K0 (8) represented

by AP is a current that circulates around the cylinder with constant amplitude

and phase; the first-order part represented by B1H cos e is a current that

*I'
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Table I

FOURIER COEFFICIENTS IN mA/V FOR INFINITELY LONG CYLINDER; E (i) . I V/m
z

E-POLARIZATION

Kz () - A+ B cos e + c cos 28 +D cos 3e + E cos 40 +

Aa A-A R + iA1  I -B + C - CR  ici  D - DR  IDI  E - R EI

0.01 16.83 + 150.59 -5.30 + £0.00 0.00 - £0.03 0.00 + £0.00 0.00 + iO.00

0.05 6.86 + £13.60 -5.28 + 10.01 0.00 - £0.13 0.00 + £0.00 0.00 + i0.00

0.10 5.03 + 17.74 -5.23 + 0.04 0.00 - 10.26 0.01 + £O.0 0.00 + £0.00

0.50 2.94 + i1.39 -4.47 + £0.74 -0.01 - i1.24 0.16 + 0.00 0.00 + iO.01

1.00 2.18 + £0.25 -3.28 + 1.85 -0.14 - 12.04 0.5 + ±0.00 0.00 + L0.10

H-POLARIZATION

KB(B) - At + B. cos 8 + CH coo 20 +

ka A AH R + iAHi In -BHR + £ HI CH CHR+ ICn1  DH  DIM+ iDHI EH " EIR+ iEHI

0.01 -2.65 + ±0.00 0.00 - 10.05 0.00 + 0.00 0.00 + O.O0 0.00 + I0.00

0.05 -2.64 + £0.01 0.00 - £0.27 0.00 + £0.00 0.00 + iO.00 0.00 + io.00

0.10 -2.61 + 10.02 0.00 - 10.54 0.01 + ±0.00 0.00 + 10.00 0.00 + i0.00

0.50 -2.23 + £0.37 0.48 - 12.62 0.33 + ±0.00 0.00 + 10.03 0.00 + i0.00

1.00 -1.64 + ±0.92 1.27 - 13.41 1.33 + £0.11 0.00 + £0.21 -0.03 + £0.00

.
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oscillates in a transverse standing-wave pattern on the illuminated and sha-

dowed halves with zero current densities and maximum charge densities of op-

posite sign at the shadow boundaries.
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SECTION III

THE CYLINDER OF FINITE LENGTH; kh - I

The currents and charges induced on tubular cylinders of finite length

are more complicated in both their axial and transverse distributions than

those induced on cylinders that are infinitely long. This is a consequence

of multiple reflections at the open ends. The currents are again determined

from the boundary condition Et = 0 on the conductor but this now extends only

from z - -h to z - h and includes both the inside and outside of the tubular

surface. Two coupled integral equations are obtained in Reference 1 for the

transverse Fourier components Kz(uln) and K (u~n), n - 0, 1, 2, ..., of the

total currents Kz (8,z) and K C(,z). Both of these components are present

with each polarization. Total currents are the sum of the currents on the

outside and inside surfaces. When ka < 1, the inside of the tube is well be-

low cut-off for waveguide modes so that the inside current decreases rapidly

from the open end inward. Measurements given in Reference 2 have shown that the

outside current on a tube with open ends differs little from the current on

the same tube with ends closed by flat metal discs. With the notation u = kz,

the equations for E-polarization from Reference 1 are:

kh
2 f Ge(u,u'in)K8 (u'In) du' - (in/ka)C sin u + C (n) (7)

0

kh kh
2 f Gz(u,u'In)Kz(u'In) du' + (2n/ka) f G z(U,u'In)K(u' In) du'

0 0

C cos 6 + C (n) (8)

The equations for H-polarization in Reference I are the same with sin u replaced

by - cos u, cos u by sin u. The constant C is determined from the condition

K z Cuin) - 0 at u - kh. For E-polarization, C z (n) (4 Eni /Z 0ka)J n(ka),

Co(n) - 0; for H-polarization, C (n) 0, C(n) -(4cnin-/ 0ka)J'(ka)Tn

kernels are G0(u,u'in) - (2/%0k a)(M(u - u'[n) T 1 e(u + u'(n)], C, z(u,u'In) -

(2/Z 0 a)(Mz(u - u'ln) ± Mz(U + u'In)], Cze(u,u'ln) - (2k/nZ0 )(Mze(u - u'ln) T

M z (u + u'ln)], where the upper sign is for E-, the lower sign for H-polariza-

tion and cn -1, n -0; n -2, n > 0. The M's are the inverse Fourier trans-

forms of Ft (Cin) (a&), A2Cfln) - -CTa/2w 0 J 1 (a )

""x (1) ''2 2  ' Hll~') with r2 k2  2 th

H (aF, M2 Cn) ( -(a&) with k The n
16



order Fourier component K (uln) can be determined from Eq. (7) and used in

Eq. (8) to obtain K Z(uln). The total currents for E-polarization are, from

Reference 1,

K z (OZ) - C W~nK Z(zln)cos ne

nwO

M A(kz) + B(kz)cos 8 + C(kz)cos 28 + D(kz)cos 38 + .. (9)

K 0(e,z) - i C (nWK 8(zln)sin no
nul

- i(B'(kz)sin 8 + C'(kz)sin 26 + D'(kz)sin 38 + .. ](10)

For H-polarization, the total currents are given in Reference 1 as:

W

K86(8,x) - I- c (nWK 0(xln)cos no

= A.A(kx) + BH (kx)cos 8 + C11(kx)cos 28 + DH (kx)cos 38 + ... (11)

K X(8,x) M i ! C 0(n)K x(xln)sin no
n=1

- i(EBICkx)sin e + C;(kx)sin 28 + DH(kx)sin 38 + .. ](12)

The associated charge densities are given by

n(8,z) - -(i/c)E3K~ C 8,z)/kaz + (l/ka)3K 6C8,z)/ae) (13)

for E-polarization and from Elq. (13) with x written for z for H-polarization.

The nuber of terms required decreases with ka. When ka - 1, K z(8,z) and

K 0 (e,x) require four terms; when ka < 0.1, only two are needed.

4 1. E-POLARIZATION

The complex coefficients A(kz), B(kz), ... , (which are functions of ka

and kz) generally oscillate about the corresponding coefficients A,B,...,

for kh- - with amplitudes that depend on ka. When kal-, both A~kz) and

B(kz) have significant resonant amplitudes about the complex constants A

and B: C(kz) and D(kz) are significant but remain virtually constant at the

values C and D except very near the open end where they decrease to zero.

Higher-order coefficients are negligible. Graphs of these quantities

17



when ka I are in Fig. 13 and Fig. 14 of Reference 3 for kh= 1.5r, in

Figs. 8 and 9 of Reference 4 for a range of values of kh between 1.57T and 3.5.

Graphs of the Fourier coefficients when ka - 0.5, 0.1, 0.05, and 0.01 are in

Fig. 3 for kh - 1.5ff. It is seen that for ka - 0.50 with A - AR + iAI, B =

BR + iB1, ... ,

K z(ez) A A(kz) + B(kz)cos 8 + iCI(kz)cos 26 + DR(kz)cos 3e (14)

but now only AR(kz) has a large resonant amplitude of oscillation about AR,

A.(kz) and BR(kz) have only small oscillatory amplitudes, and BI(kz), CI(kz),

and DR(kz) are constant near the values B1, C1, and DR for kh - except very

near the ends. For ka < 0.1,

K (O,z) & A(kz) + BR(kz)cos 8 (15)

AR(kz) and A1 (kz) both have large amplitudes of oscillation about AR and A,;

BR(kz) is equal to BR except very near the open end. The approximate formula,

Eq. (15), is given in Reference 5. It is consistent with the corresponding rela-

tion for the axial current density induced on a prolate spheroid as given by

Taylor and Harrison in Reference 6.

A convenient approximate representation of the dependence of the Fourier

components on the axial variable involves the function e(kz) which is defined

in Reference 4 as follows.

a(kz) - 1 , 0_< jzj ! (h - d) ; e(kz) -" sinfr(h - lzl)/2d]

h - d < jzj < h (16)

It is usually adequate to set d - a, where a is the radius of the tube. With

Eq. (16), Eq. (14) is approximated by A(kz) - (A + Ar cos kh)e(kz) + Ar (cos kz

- cos kh), B(kz) " (B + Br cos kh)e(kz) + Br (cos kz - cos kh), CI(kz) - CIe(kz),

DR(kz) A DRe(kz) so that

ka - 0.50: K z(8,z) - A + Ar cos kh + (B + Br cos kh)cos 8 + iCI cos 28

+ DR cos 36]e(kz) + (Ar + B cos e)(cos kz - cos kh)

(17)
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Similarly, for Eq. (15),

ka < 0.1: K z(e,z) 1 [A + Ar cos kh + BR cos e]e(kz) + Ar (cos kz - cos kh)

(18)

These formulas are valid when kh > r/2. The range kh < w/2 is discussed in

the next section. The amplitudes of the resonant parts of the coefficients

are defined as follows: Ar - (I/2)[A(0) - A(i)], Br a (l/2)[B(O) - B(ir)].

In Reference 5 and Fig. 4 are shown Fourier coefficients AR(kz), Al(kz)

and BR(kz) for long resonant and antiresonant tubes with ka - 0.01 and, re-

spectively, with kh - 3.5w and kh - 3n. Also shown are AR, AI and BR for

kh -

Graphs of IKz(8,z)I and Icn(O,z)[ as functions of kz as computed from

Eqs. (9) and (13) for 0 - 0* (shadow) and e - 180" (illuminated side) are

shown in Ref. (5] and in Fig. 5 for ka - 0.01 with kh - 3.5w at the top,

kh - 3w at the bottom. When kh - 3.5n, Kz(8,z) has the axial distribution

characteristic of a cylinder in a normally incident, E-polarized field at a

resonant length as described in Reference 7. The maxima are alternately larger

and smaller for the current and almost constant for the charge. Even with ka

as small as 0.01, the current on the illuminated side is not consistently

greater in magnitude than in the shadow as when kh - - (Fig. 2). Actually,

the amplitude is higher on the illuminated side than in the shadow only with

the larger maxima centered at kz - w and 3r, lower with the smaller maxima

centered at 0 and 2w. The reason for this behavior is obvious from the

Fourier components in Fig. 4 where, at the top, BR cos 180* is added to

AR(kz) along the extremes centered at kz - r and 3w and is subtracted from

AR(kz) along the peaks centered at kz - 0 and 2w. Since the current that

varies as e(kz) contributes nothing to the charge except in a short range of

length d % a near the open end, the charge density is practically rotation-

ally symmetric everywhere outside this range.

The graphs of JKz(e,z)I and Icn(8,z)j when kh - 3n are at the bottom of

Fig. 5. They show that near axial antiresonance IK1(180,z)l > IK (0,z)l for

all values of z. This follows from the Fourier components in the lower por-

tion of Fig. 4. Since the oscillations in A R(kz) and AI(kz) are not large

enough to become negative, the component BR cos 8 always combines with A R(kz)

to increase it when 0 - 180* and decrease it when 8 - 0.
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The transverse distributions of IK z(,z)i as a function of 6 at selected

values of kz are shown in Reference 5 and in Fig. 6 for kh = 3.5q and kh =

with ka - 0.01, 0.05, 0.1, and 0.5 and in Fig. 7 for kh - 37 and kh - - with

ka - 0.01. It is seen in Fig. 6 that for all values of ka the transverse

distributions at kz - w and 3n are comparable and increase from 8 = 0* to

8 - 180. For kz - 0 and 2w the amplitude decreases as 8 is increased from

zero to reach a minimum at 8 - 180* for ka - 0.01, 0.05, and 0.1, at 0 - 110*

for ka - 0.5. In this last case the relative maximum at 8 - 180* is smaller

than the maximum at 8 = 00. At kz = w/2, 3n/2, and 5r/2, the curves are all

similar and show an increasing amplitude from 8 = 0* to 8 - 180. The graph

for kz w i/2, kh - 3.5w, is almost identical with that for all values of kz

when kh = . This follows from the fact that the resonant part of the cur-

rent when kh = 3.5w, viz., cos kz, is zero at kz = w/2 and the forced parts

are essentially the same on the finite and infinite cylinders except very

near the end. In Fig. 7 for kh = 3w, all transverse distributions increase

from 8 - 0 to 8 - 180. Those at kz = w/2, 37/2, and 5w/2 again closely re-

semble the curve for kh c o.

Axial distributions like those at the top in Fig. 5 for kh = 3.5w, ka =

0.01, and the associated transverse distributions in Fig. 6 are given in Reference

5 and Figs. 8 and 9 for kh = 1.51r - also a resonant length. In addition to

graphs for ka - 0.01, distributions are given for ka = 0.05, 0.1, and 0.5.

These show the growing separation between curves for 8 - 0* and 8 = 180 ° as

ka is increased and serve to emphasize the fact that the transverse distribu-

tion of the axial current density Kz (,z) induced in a conductor of finite

length by a normally incident, E-polarized plane wave depends not only on the

value of ka but also on kh and the location kz in the standing-wave pattern

along the conductor. It differs considerably from the transverse distribu-

tion in an infinitely long conductor at all but a few points. The charge

distribution is generally rotationally symmetric for ka < 0.1 except within

short distances of the open end where it is very far from rotationally symme-

tric even on very thin cylinders. Complete analytical solutions for the

axial distributions of the rotationally symmetric current I (z) - 2 ra(Kz(z)]0
z

and charge per unit length q(z) = 2ran(z)]0 for electrically thin and long

cylinders have been derived by Chen and Wu in Reference 8 for a normally inci-

dent, E-polarized incident field and by Chen in Reference 9 tor an arbitrarily
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incident field. Graphs of the corresponding numerically calculated currents

I(z) are shown by Harrington in Reference 10. A complete theory for thin cylin-

ders that are not too long in an arbitrarily incident field has been derived

by King in References 11 and 12.

The transverse component of current K8(8,z) is very small except within

distances d % a of the open end where it rises steeply to large values. Its

transverse distribution is proportional to sin 8.

2. H-POLARIZATION

The component of surface current Ke(e,x) on tubes of finite length

differs little from K (0) for kx= - except within distances d %a of an

open end where it rises steeply. For each value of ka, the Fourier

coefficients given in table 1 are good approximations for cylinders of

finite length for all values of jkxl < k(h- d) where d % a.
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SECTION IV

THE ELECTRICALLY SHORT AND THIN CYLINDER: ka < kh < 1 (BASED ON REFERENCE 5)

1. E-POLARIZATION

The current densities K (6) and K (6,z) induced in tubular cylinders,

respectively, with infinite and finite lengths are well approximated by

Kz(6) A + BR cos e when kh = and by K z(e,z) RA(kz) + BR(kz)cos

when kh is finite provided ka < 0.1. The coefficient A = A + iA1

and, so long as kh > 1, also the coefficient A(kz) = AR(kz) + iA(kz) in-

crease in magnitude with decreasing ka. On the other hand, BR and BR(kz) re-

main constant and all higher-order coefficients decrease when ka is reduced.

As can be inferred from Figs. 3 and 4, A R(kz) and AI(kz) oscillate, respec-

tively, about A and A when w/2 < kh < -. Their amplitudes for each value

of ka are greatest when kh is at a resonant length, smallest when kh is at an

antiresonant length. When kh is reduced below the first resonance near kh -

v/2, both AR(kz) and AI(kz) approach zero as kh - 0. This behavior is illustra-

ted in Reference 5 and Fig. 10 at kz - 0 for cylinders with ka - 0.01 and

0.05. AR(O), AI(O), BR(0) and CI(0) are all shown as functions of kh. It is

seen that A1(0) dominates when kh > 1, but decreases rapidly when kh is re-

duced so that it becomes equal to BR(O) at kh = 0.166w for ka - 0.05 and at

kh - 0.1w when ka - 0.01. When kh is decreased below these values, BR(O)

exceeds A1 (0) and actually dominates when kh < 0.06w with ka - 0.05 or kh < 0.04w

when ka = 0.01. Thus, the current that is very nearly rotationally symmetric

when ka - 0.01 and kh > 1 becomes equal and opposite on the illuminated and

shadowed sides of the cylinder when ka - 0.01 and kh is sufficiently small.

The three significant Fourier coefficients AR(kz), AI(kz), and BR(kz) are

shown in Fig. lla for ka - 0.05 and in Fig. llb for ka - 0.01 as functions of

z/h with kh as the parameter. When kh < r/2, the axial distributions have

the approximate form

A(kz) A A(0) cos kz - cos kh1 - cos kh BR'kZ) " BRekz) (19)

where A(0) - A + A and A is the complex amplitude of the oscillatory partr r
of the current. Note the rapid decrease in A(kz) as kh is reduced with con-
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stant ka and the almost complete constancy of the first-order term BR(kz) and

of the second-order term CI(kz), which is negligibly small.

The axial distribution of the magnitude and phase of the surface density
of current on the illuminated side, viz., K z(1800,z) - A(kz) - BR(kz) is shown

as a function of kz in Reference 5 and in Fig. 12a for ka= 0.05 and Fig. 12b

for ka = 0.01. The total current (sum of outside and inside currents), the

outside current and the inside current are shown. Since the latter decreases

rapidly inward from the open end, the total and outside currents differ sig-

nificantly only quite near the open end. The associated transverse distribu-

tions at z - 0, viz., Kz(6,0) as a function of 6 are in Fig. 13a for ka -

0.05 and in Fig. 13b for ka - 0.01. Note that when kh - 0.275w or 0.3w, the

amplitude IKz(8,z)I and the phase angle 6 are both quite constant around thez
cylinder. As kh is reduced in steps to kh - 0.0375w with ka - 0.05 or kh =

O.01w with ka = 0.01, IKz(8,z)I develops an increasingly deep minimum at 6 -

90* and a phase change approaching 1800 from the illuminated side (6 - 180*)

to the shadowed side (6 - 0*). When kh = 0.275n or 0.37, the zero-order ro-

tationally symmetric component A(kz) dominates, when kh = 0.0375n or 0.01w,

the first-order term BR(kz)cos 9 dominates. As kz approaches kh, the ampli-

tude of the current decreases but the dip at 8 - 90* is relatively even

deeper.

The multiple reflection of the rotationally symmetric, zero-order cur-

rent at an open end to generate the standing-wave distribution [K(ZW)]o -

A(kz) involves only axially directed currents and charges 1(z)]0 that are

independent of 6. The reflection of the higher-order currents is quite dif-

ferent in that it involves not only axial currents like [Kz(e,z)]1 - B(kz)

x cos 6 that are not rotationally symmetric, but also transverse currents

K (6,z) that are large particularly within short distances d -. a of the end.

Actually, what is an open end for the rotationally symmetric zero-order cur-

rent is effectively a somewhat extended short-circuited end for the two con-

ductor, transmission-line-like first-order current. The transverse current

K e(,z) on an electrically thin cylinder is given by

K6 (9,z) & -B (kz)sin 6 (20)

-c. 33
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The real function B'(kz) is shown on a logarithmic scale in Figs. 14a and 14b,

respectively, for ka - 0.05 and 0.01 as a function of z/h with kh as the

parameter. K 8 6,z) is quite small everywhere except near the open end where

it rises steeply to values comparable to those of the associated axial com-

ponent, Kz(8,z) BR (kz)cos 8. In effect, the axial current approaches the

open end on the illuminated half of the cylinder (90* < 8 < 270*), circulates

around the cylinder as a transverse current with maxima at e - 90, 270* near

the end, and then continues as an oppositely directed axial current on the

shadowed side (-900 < 6 < 90*). The transverse current is associated with a

rotationally asymmetrical distribution of charge.

Graphs of the magnitude lcn(e,z)l as a function of z/h are displayed in Ref-

erence 5 and in Fig. 15a for ka = 0.05 and Fig. 15b for ka - 0.01. These

show that the charge density rises steeply to a high value at the open end.

The transverse distributions of Icn(e,z)j, respectively at z/h - 0.2 and 0.8,

as functions of 8 with kh as the parameter are in Fig. 16a for ka - 0.05 and

in Fig. 16b for ka = 0.01. The associated phase angles 8 are in Figs. 17a

and 17b. It is seen that when kh = 0.35fr for ka = 0.05 or 0.4v for ka - 0.01,
Icn(e,z)I is almost rotationally symmetric since the term A(kz) dominates.

On the other hand, when kh = 0.03757 for ka = 0.05 or 0.01n for ka - 0.01,

Icr(8,z)j develops a deep minimum at e = 90* and its phase changes from the

illuminated half into the shadowed half by nearly 180. The entire effect is

much more pronounced near the open end at z/h - 0.8 (where the charge density

and transverse current are large) than near the center at z/h = 0.2 (where

the charge density and the transverse current are very small). Note that

when the cylinder is sufficiently short,nearly equal charge densities of op-

posite sign occur near 8 = 00 and 1800; these are associated with the trans-

verse currents Ke( 8 ,z) % sin 0 that have maxima at 8 - 90" and 270.

2. H-POLARIZATION

When ka < 0.1, the surface densities of current induced in tubular

cylinders are well approximated by K() = + BH cos 9 when kh

and by K (@,x) = AH(kx) + B H(kx)cos 8 when kh is finite. Except within
%H

distances d ^ a of an open end, the coefficients are almost constant along

the tube so that A H(kx) A, a -I/Z0 - -2.65 mA/V, which is independent of ka

and kx, and B H(kx) B - -i2ka/Z 0 a -i5.3ka mA/V. Specifically when ka
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0.01, B H - -i0.053 mA/V; when ka - 0.05, BH - -i0.265 mA/V. When kh > 1,

A11(kx) and B,(kx) with H-polarization are small compared with A(kz) with E-

polarization. However, when kh < 0.166w for ka - 0.05 or kh < 0.lw for

ka - 0.01, A(kz) becomes smaller than B(kz) 1 BR -2/Z0 - -5.3 mA/V which

is comparable with AH. The reason is simple. AHR = -H is the circulating

current K8 required to set up an axial magnetic field that cancels the inci-

dent axially directed magnetic field in the perfectly conducting tube. Simi-

larly, BR - -2Hi) is the axial current K (8) required to cancel the incident
x Mz

transverse magnetic field H 1) in the perfectly conducting cylinder along thex
z-axis. These are the components of current that are required in the absence

of all resonances to satisfy the boundary conditions. When the conductors

are sufficiently thin (ka < 0.1) and short (kh < 1), end-reflected and reson-

ant currents are small compared with the currents required to cancel the inci-

dent magnetic field in the perfectly conducting tube.

The axial currents K (e,x) generated in a cylinder parallel to the inci-
x

dent magnetic field by reflections at the open ends are given by

Kx(6,x) - iB (kx)sin 8 (21)

When ka < 0.1, IB,(kx)l is quite small compared with AH(kx). That is, the

axial current density is small compared to the transverse current density in

cylinders that are sufficiently thin and excited by an H-polarized field.
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SECTION V

COMPARISON WITH MEASUREMENTS

Since the theory of Kao in Reference 1 involves no assumptions other than

those implicit in the idealized model of a perfectly conducting cylinder with

zero wall thickness - which is well approximated by a thin-walled metal tube -

a comparison of theoretical results with measured ones serves primarily as a

means of checking the accuracy of the experimental techniques and apparatus

including especially probes. Extensive very satisfactory comparisons have

been made and reported in References 3 and 4 on all aspects of the distribu-

tions in amplitude and phase of the current and charge densities on cylinders

with ka - I and electrical lengths between kh - 1.5n and 3.5n. A similar but

less extensive set of measurements with ka - 0.05 and kh - 0.0375w, 0.075w and

0.1751 has been carried out. A sample given in Reference 5 is shown in Fig. 18

for the axial and transverse currents on a tube with ka = 0.05 and kh -

0.175w. The graphs give the currents at cross sections quite close to the

open end where the axial and transverse densities have comparable magnitudes

and where the rotationally symmetric part of the axial current is substanti-

ally smaller than near the center. The measured graphs for lKz(6,z)l are for

the outside current which, as seen from Fig. 12a, has a significant relative

magnitude at z - h when ka - 0.05 and kh = 0.175w. The graphs in Fig. 18 in-

dicate that in the approximate formula, K z(O,z) A A(kz) + RR(kz)cos 8, the

zero-order term A(kz) is smaller in magnitude than the first-order term B R(kz)

x cos 8. This is evident from the deep minima at 8 - 90* and 270* and the

associated phase change of approximately 180". The measured variation with

8 is consistent with that shown in Fig. 13a at z - 0 where, however, the ro-

tationally symmetric term is relatively more important than near the open end.

The slow decrease of IKz(8,z)I with z/h as the open end is approached agrees

with Fig. 12a for the outside current.

The measured transverse current shown at the top in Fig. 18 is in excel-

lent agreement with the approximate formula, Eq. (20), according to which

K8 (8,z) 'u sin e. Note that Figs. 12a and 14a indicate that close to the open
end JKe(,z)j and the outside part of IKzC8,z)I are comparable in magnitude.

The very rapid increase in JK8 (0,z)1 as the open end is approached is evident

from the family of curves in Fig. 18 and consistent with the theoretical re-

sults shown in Fig. 14a.
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SECTION VI

INTERSECTING ELECTRICALLY THIN CYLINDERS; ka < 0.1

The determination of the surface currents and charges on the intersect-

ing tubular cylinders shown in Fig. I is advantageously treated in two parts

of which the first, relating to tubes with ka < 0.1, is considered in this

section; the second, dealing with cylinders with ka > 0.1, is discussed in a

later section. When ka < 0.1, the surface density of current induced in the

vertical tube by the normally incident E-polarized field is well approximated

by Kz (6,z) 1 A(kz) + B R(kz)cos 6 and K (6,z) & iB'(kz)sin 6. Except within a

radial distance of each open end, BR(kz) ~ BR and K (8,z) is negligible.

Similarly, the current induced in the horizontal member by the normally inci-

dent H-polarized field is well approximated by Ks(O,x) :& AH(kx) + BH(kX)cOS 9

and Kx (6,x) - iB,(kx)sin e. Here AH(kx) AR , B11(kx) AiBHI' and Kx(6,x) is

negligible except within a radial distance of each open end. These are the

currents induced in the cylinders when individually isolated. They must now

be modified to include the effects of the mutual interaction by coupling and

the common junction. This can be accomplished by treating the zero-order ro-

tationally symmetric component and the higher-order components separately.

Such a separation is particularly useful when ka < 0.1 since then B & -2/Zo,
A -I/Z0, and B -2ka/Z with /Z0 . (i) 2.65 mA/V when ER 1 V/m.
ARHI 0 l/ x zl)-1Vm

Thus, BIII is negligible and BR and AR are determined directly by the inci-

dent magnetic field in a manner independent of both the radius and the length

of the conductor. This means that the presence or absence of a junction has

only local significance insofar as the equal and opposite axial currents

given by BR cos 6 and the circulating currents AR are concerned. Specifi-

cally, these components are substantially the same for the intersecting and

the isolated cylinders. Accordingly, they can be determined for the latter

and subsequently combined with the rotationally symmetric currents A(kz).

When the vertical conductor is electrically so short that BR >> IA(O)1,

the rotationally symmetric component of the current is negligible. It is

seen from Fig. 10 that BR - 51A(O)l when kh < O.06w with ka - 0.05 and

kh < 0.04n when ka - 0.01 where h stands for hI or h The same conclusion

is true for the horizontal conductor if it is electrically short. When the

rotationally symmetric component of current is negligible compared to the

equal and opposite first-order current with amplitude BV cos 6, the entire

current on that conductor can be determined as if it were isolated in the
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same incident field. If both of the intersecting conductors are electrically

short, the entire significant current on each is that obtaining when it is

isolated in the same incident field. This applies specifically to currents

induced by the sufficiently low-frequency components of an incident electro-

magnetic pulse.

When the conductors forming the cross are not electrically short, the

rotationally symmetric component of current A(kz) is dominant and can be de-

termined separately taking full account of end and junction conditions and of

inter-arm coupling. The contribution by the first-order component BR(kz)cos e

can be combined with A(kz) to obtain the entire current K z (O,z) A A(kz) +

BR(kz)cos 8, where DR(kz) 4 R . It remains to determine A(kz). This can be

accomplished with so-called thin-wire theory which is very well developed.

Since the zero-order current [K z(z)] = A(kz) induced in the vertical

conductor is rotationally symmetric, it can be expressed in terms of the

total axial current I (z) - 2waA(kz). There is no such current induced in
z

the horizontal conductor by the incident field when its electric vector is

parallel to the vertical conductor as in Fig. l(b). However, a current I (x)x
is induced by charges on the vertical conductor. When the incident electric

field has a component parallel to the horizontal conductor as in Fig. l(a),

* 0 0, it induces a current I (x). In order to determine both I (z) andx
I x(x), it is necessary to derive and solve the relevant coupled integral

equations subject to boundary conditions at the open tubular ends of the con-

ductors and at the junction. With reference to Fig. 1, the conditions on the

currents at the ends of the four arms are:

Ilz(-hl - I2z(h 2 ) - 13 x(-_ 1 ) = 14x(22) - 0 (22)

The conditions at the junction must relate the currents and the charges per

unit length in the four arms. Strictly they must involve these quantities at

electrically short distances from the junction where they are still rotation-

ally symmetric. However, since with ka < 0.1, the electrical surface area of

the junction region is very small - of the order (ka) < 0.01 - its shape is

immaterial, and the total charge on its surface is negligible. Accordingly,

no significant error is introduced, insofar as currents and charges at elec-

trically very small distances from the junction are concerned, if it is as-
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sumed that each arm and its rotationally symmetric current and charge per

unit length extend to the junction point x - z = 0 as if concentrated along

the axes of the conductors. The junction conditions can then be imposed at

this point. For a vertical conductor with radius a and a horizontal conduc-

tor with radius a3, they include the Kirchhoff condition on the currents,

from Reference 13,

I z(0) -
12z( 0 ) + 13x(0) - 14x(0) = 0 (23)

and the following three conditions on the charges per unit length, from Reference

7,

ql()Y I . q2 (0)42 = q3 (O)T3 = q4 (0)'#4  (24)

where, for conductors at least a quarter wavelength long,

T1 l T 2 = 2[tn(2/ka1) - 0.5772] ; 3 = T4 
= 2(n(2/ka3) - 0.5772] (25)

Note that these parameters are independent of the lengths of the conductors.

For shorter conductors, the length is significant and

F1 = I2 - 2 tn[(h 1h2)l/a 1 T 3 I4 =2 £n[(1Z2) /2a2 (26)

When all radii are equal (a1 . a3 = a), I ' V2 = I3 I4 in Eq. (24) and

this reduces to the equality of charges per unit length, not the surface

density n = q/2na.

The use of thin-cylinder theory with its significant simplifications is

an acceptable approximation only when the following inequalities are satis-

fied:

ka << ; a << hi , a1 << h2  (27a)

ka << 1 ; -<i a << Z (27b)

Significantly, these conditions actually contain the following:

kh I  1 kh2  >1 k£ 1 k£ 2 '1 (28)
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These are recognized to be the conditions previously imposed to assure that

the rotationally symmetric, zero-order component [K z(z)]o - A(kz) is large

compared to the first-order component K z(e,z)) 1 BR cos 8. It follows that

when thin-cylinder theory is properly used, the significant currents are ro-

tationally symmetric. The analytical determination of the currents and

charges induced in intersecting thin cylinders by an electromagnetic wave

with the wave normal directed as shown in (a) of Fig. 1 and with the compon-

ents given in Eqs. (la,b) is outlined below.

The coupled integral equations that govern the rotationally symmetric

currents I (z) in the vertical conductor and I (x) in the horizontal one are

best obtained in a form that permits the convenient application of the end

and junction conditions in Eqs. (22), (23) and (24) which involve the cur-

rents and charges per unit length explicitly. Eauations that are expressed

in terms of the scalar and vector potentials are inconvenient and have been

used, for example in References 14 -16, with conditions requiring the contin-

uity of the potentials at the junction instead of the charge per unit length.

Since the potentials are in any case continuous, such a procedure is redun-

dant and merely rearranges the form of the equations without taking correct

account of the behavior of the charge per unit length.

The required equations in the desired form are readily derived, as in

References 17 and 18, from the one-dimensional boundary conditions on the sur-

face of the conductors. These are

E (z) - EM - a (z)/az - JuA (z) = 0 , -h z<h (29a)
z z z h1  - h2

E x (x) - Ei ) Dx(X) - wA x) 0 , -LI - < I (29b)
x x -3(xx l- -2

When the integrals for the scalar potential and the components of the vec-

tor potential A are substituted in Eqs. (29a,b), the following pair of simul-

taneous integral equations is obtained for the unknown currents I (x) andx

Iz (z). Note that q(z) - (j/w)3z (z)/gz, q(x) - (J/w)aIx(x)/ax.

h2 h2  X2

f I (z')K(z,z') dzt -L f q(z')K(z,z') dz' + f q(x')K(z,x') dx']
h z k2  z _h -

= -(j4n/wu 0)E(i)(z) (30a)
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2 2 h 2

f I (x')K(xx') dx' - [ q(x')K(x,x') dx' + f q(z')K(x,z') dz']- X k -2 a -hl

- -(j4/wu0)
E ( 1 )  (30b)

where E( )(z) and E(i) are given in Eqs. (la,b). The kernels are defined asz x f2 2 1/2,
follows: K(z,z') = exp(-JkR z)/R with Rz  [(z - z')2 + al] , K(x,x') -

exp(-JkRx)/R with Rx W [(x - x')2 + a3 2  ; K(z,x') - exp(-JkR )/R with
2 + x 2 42 1/2 2 w

R cz W [z2 + x '2 + a 3] ,K(x,z') - exp(-JkRcx)/Rcx with Rcx = [x 2 + z'2 +

a1]l/2 . Note that K(z,z') - KR(Z,z') + JK1 (z,z') with KR(z,z') - cos(kRz)/Rz,

Kl(z,z') - -sin(kR )/Rz. The equations (30a,b) are to be solved for I (z)
I z z

and I (x) subject to the four end conditions in Eq. (22), and the four junc-
x

tion conditions in Eqs. (23) and (24).

Analytical solutions of these equations have been obtained when a1 W a3

= a under two sets of conditions which encompass the most significant aspects

of the possible distributions of current and charge in a relatively simple

form. They are first, from Reference 10, a normally incident field with the

electric vector parallel to the vertical conductor as in Fig. l(b) and arm

lengths that are arbitrary and, secondly, from Reference 11, a generally inci-

dent field as in Fig. 1(a) but with arm lengths that are all equal. More

general cases than these two are readily formulated and evaluated by analyti-

cal or numerical methods. Zero- and first-order currents and charges have

been calculated for a wide range of arm lengths in Reference 17; only zero-order

currents are given in Reference 18. Measured currents and charges are in

Reference 19. Details of the analytic solution and explicit formulas for the

coefficients are given in Reference 16. The method used is iterative with simple

zero-order terms used to obtain the first-order solution.

Zero-order terms alone are generally adequate for very thin conductors

with electrical arm lengths not near integral multiples of w/2 and kh > 1.

For normal incidence with the electric field parallel to the z-axis, the

zero-order currents are given in Reference 17 as:
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(z ]0 = -AW[sin k(h1 + z) + sin k(h2 - z) - sin k(h1 + h2 ) + F(II 2 )

x cos kh 2 (cos kz - cos kh I )] , -h< z < 0 (31a)

[1 2 z(Z)] 0 - -AI[sin k(h 1 + z) + sin k(h 2 - z) - sin k(h I + h2 ) + F(tIt 2 )

x cos khl(cos kz - cos kh2)] , 0 < z < h2 (31b)

[3 xW) - AW(cos kh2 - cos khl)sin k(£I + x)/cos k£I , -i1 < x < 0 (31c)

[14 x) 1 -AW(cos kh2 - cos khl)sin k(t2 - x)/cos ki2  , 0 < x < (31d)

where

A -(j4E i /WV0Y) (-j/60ir'Y) ( X) (32)

W= (sin k(h1 + h2) + F(£1 ,i2)cos kh1 cos kh2 ]
1-  (33)

and

F(LIR 2) = tan kZ + tan ki 2  (34)

The associated charges per unit length are:

(q I(Z)]o= (-jkAW/w)[cos k(hI + z) - cos k(h2 - z) - F(l1,t2 )cos kh2 sin kz]

(35a)

[q2 (z)]o - (-JkAW/w)[cos k(hI + z) - cos k(h2 - z) - F(Z If12 )cos kh1 sin kz]

(35b)

[q3 (x)]0 - (jkAW/w)(cos kh2 - cos khl)cos k(LI + x)/cos kt, (35c)

[q4(x)]o - (JkAW/w)(cos kh2 - cos khl)cos k(t 2 - x)/cos kL2  (35d)

Note that at the junction, x - z - 0,

[qi(O)]o - (-JkAW/w)(cos khI - cos kh2) ; 1 - 1, 2, 3, 4 (36)
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The charges per unit length on all arms have the same value as the junction

is approached. This is zero only when h = h2 . (1hen higher-order terms are

included, Eq. (36) does not vanish when kh and kh2 differ by nw.) In this

case, Eqs. (31b,c) and (35c,d) show that all currents and charges vanish at

all points on the horizontal cylinder. In the absence of a component of the

electric field along the horizontal conductor, currents and charges are in-

duced only when there is a nonzero charge on the junction at z 0 0. With a

normally incident field this occurs only when the junction is at the center

of the vertical cylinder. Currents that are excited on the horizontal con-

ductor by periodically varying charges at x - 0 are necessarily oppositely

directed near x 0 0. The discontinuity in the vertical current at the junc-

tion is l (0) -12(0) --AW(tan kRI + tan k2)(cos kh2 - cos khl). It is, of

course, the negative of the discontinuity in the horizontal current, I3x(0) -

14x(O),so that Kirchhoff's law in Eq. (23) is obeyed.

The distributions of current and charge per unit length on the vertical

member include one set of terms characteristic of the cylinder in the ab-

sence of the transverse member and a second set of terms that takes account

of the interaction with the horizontal cylinder. The former are more easily

recognized when expressed in terms of the coordinate z0 with origin at the

center of the vertical tube and the half-length h = (hI + h2 )/2. With these

it follows directly that in Eqs. (31a,b), sin k(h1 + z) + sin k(h2 - Z)

- sin k(hI + h2) 2 sin kh (cos kz0 - cos kh) and in Eqs. (35a,b), cos k(h1

+ z) - cos k(h2 - z) = 2 sin kh sin kz0 " Thus, these terms represent the

simple shifted cosine distribution of the current and sinusoidal distribution

for the charge per unit length but referred to an arbitrarily located origin

for z. They provide a zero charge per unit length at the center, but a non-

zero value at the junction so long as this is not centered. It is this

charge which generates the currents on the horizontal cylinder. The second

4., set of terms in Eqs. (31a,b) and (35a,b) is multiplied by the coupling factor

F(Zl 2 ) that takes account of the horizontal currents on the cross. In Eqs.

(31a,b) they are shifted cosines with respect to each arm length; they pro-

vide a discontinuity at the junction so that there can be currents in the

side arms in accordance with Kirchhoff's law in Eq. (23). In Eqs. (35a,b)

the terms multiplied by F(t1, 2) are simple sinusoids which provide no charge

at the junction. The currents and charges in the horizontal arms consist of
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one term only and this is multiplied by the coupling coefficient, cos kh2 -

cos khI . Note that the current in the horizontal member is distributed in

the form sin k(I - lxi) which is quite different from the shifted cosine dis-
tribution in the vertical member. The latter is induced by the uniform inci-

dent electric field, the former by charges at the junction that induce oppos-

itely directed currents in the two arms.

When the electrical length of any of the four arms is at or near an in-

tegral multiple of r/2, first-order terms must be included. Sample distribu-

tions of current and charge for such cases are discussed later in this sec-

tion.

In order to induce currents on the side arms, it is necessary either to

have a component of the incident electric field along the horizontal element

or to maintain a nonzero charge on the vertical cylinder at the junction.

When the junction is at the center of the vertical member, this can be accom-

plished by non-normal incidence as indicated in Fig. l(a). When the incident

field in Eqs. (la,b) induces currents in a cross with equal arms, the effect

of non-normal incidence in maintaining charges at the junction is separated

from the effect of unequal arm lengths already determined for normal inci-

dence. The properties of currents induced by uniform electric fields and by

those with a progressive phase shift can be examined individually.

The solution of Eqs. (30a,b) with a3 = a1 = a and h2 - h = £1 a t2 - h

is relatively simple in zero-order. The currents on both vertical and hori-

zontal elements consist of parts that are even in the coordinate, i.e.,

I even(-V) = I even(v), and parts that are odd, i.e., I odd(-V) = -l odd(v) where

v - x or z. The four currents are conveniently represented as follows in

Ref. (181:

[Ilz(Z)]0 - leven(Z ) - Iodd(z ) , -h < z < 0 (37a)

(I2z(Z)]0 . Ieven(Z) + Iodd(z) , 0 < z < h (37b)

[I3x(X)]o = Ieven(X) - Iodd (x) , -h < x < 0 (37c)

( 4x(X)1 Ieven() + lodd (x) , 0 < x < h (37d)
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where the even and odd parts of the currents are

0 cos kz cos qh - cos qz cos kh(

'even(Z) = A sin e o h (38a)

sin kjzj sin qh - sin qJ z sin kh
Iodd(z) -0/2)(A cos 41)[ sin 0 sin kh

cos kz sin qh - sin qizi cos kh - sin k(h - lIz)cos 0 (
+ sin 0 cos kh] (38b)

I W) -(A sin P)r cos kx- cos kh1 (38c)
even L cos kh I

I(x W 0/2)C(A cos t)sin nh -sn kh cos 0][sin k(h lxi)](8dodI sin 0 sin kh 11 cos-kh(3d

The associated charges per unit length are presented in the same sequence as

the currents. Note that odd charges are derived from even currents and vice

versa.

[ql ( z ) 0 -q odd(z) + q even(z) (39a)

[q 2(z ) ]0 - qodd (z) + qeven (z) (39b)

(q3(x ) ] -q odd(x) + q even(x) (39c)

[q4 (x)]0 - qodd(x) + qeven(X) (39d)

where

c s in kIZ I cos qh - sin qiz, cos kh cos 01
qodd(Z) - (jk/w)(A cos kzi sin 0 cos khJ

q ) (k/2)(A cos b) cos kz sin qhn- cos qz sin kh cos 0
even sin 0 sin kh
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sin kizi sin qh + cos qz cos kh cos e - cos k(h - IzI)cos E)
sin e cos kh

(40b)

qodd(x) - (jkl/w)(A sin ,)cos kh (40c)

e sin 0 sin kh R coh xi)

At the junction, x = z - 0, and with i - 1, 2, 3, 4,

q ] [qeen(0)]0 . (k/2r)(A cos )sin gh- sin kh cos 1 (1
[q1  0  even sin 0 sin kh (41)

The conditions for zero charge per unit length in each arm as the junction is

approached are seen to be * = w/2 and 0 = w/2. When * - w/2, the electric

vector has no component along the vertical conductor and, since it is con-

stant in phase along the horizontal tube, the charge per unit length at its

center vanishes. When 0 - w/2, the wave is normally incident with the com-

ponent E cos * parallel to the vertical conductor, the component
0

Ei) sin i parallel to the horizontal one.
0

The several terms in the currents in Eqs. (37a-d) and in the charges per

unit length in Eqs. (39a-d) are readily identified. The current I even(z) in

Eq. (38a) and the first fraction in I odd(z) in Eq. (38b) are, respectively,

the even and odd currents induced in the vertical cylinder in the absence

of the horizontal conductor (Refs. 11 and 12). Similarly, I even(x) in

Eq. (38c) is the same as the current induced in the horizontal cyilnder when

the vertical one is absent. The associated charges are given by the corre-

sponding terms in Eqs. (40a-c). Note that qodd(z) in Eq. (40a) and q odd(x)

in Eq. (40c) are zero at the junction so that they are not coupled either to

each other or any other charges in the intersecting cylinders. The entire

current Iodd (x) in Eq. (38d) is excited by charges at the junction. Its dis-

tribution but not its amplitude is independent of 0. The second fraction in

Iodd (z) in Eq. (38b) is the current in the vertical conductor generated by

the oscillations in the horizontal cylinder. It includes a term, - sin k(h

- IzI)cos O, with a distribution like that in Iodd(x) but there are other,

O-dependent terms that contribute to the fairly complicated distribution.
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However, as can be seen from the corresponding terms in Eq. (40b), the as-

sociated charges vanish at the junction, z = 0. In the vertical cylinder all

of the charges at the junction are given by the first fraction in Eq. (40b);

they are generated by the part of the odd current that would remain if

the horizontal cylinder were removed (Refs. 11 and 12). Thus, the

charges at the junction associated with the part of the current that is as-

sociated with the isolated vertical cylinder excite the charges and associ-

ated currents in the horizontal cylinder to satisfy the three junction condi-

tions on the charges. This resulting modification in the charges on the ver-

tical cylinder is associated with new currents that combine with the currents

on the horizontal cylinder to satisfy Kirchhoff's condition at the junction.

When the junction of intersecting cylinders is not centered on the ver-

tical element and the exciting wave is not normally incident, both the even

and odd components of the current on the vertical cylinder have associated

charges at the junction which generate odd currents in the horizontal member

in a manner readily understood from a combination of the effects described in

conjunction with Eqs. (31a-d), (35a-d) on the one hand, and Eqs. (37a-d),

(39a-d) on the other hand. The corresponding zero-order currents and charges

can be derived from solutions of the general integral equations, but they are

sufficiently complicated to make a sinple interpretation difficult. In gen-

eral, first-order solutions must be obtained from these equations in order to

have a quantitative picture of the currents and charges on the intersecting

cylinders. This is true particularly near and at resonance. For example in

the cross with all arms equal, resonant oscillations along the horizontal and

vertical cylinders and from one vertical arm to one horizontal arm all occur

at the same frequency according to zero-order theory. Actually, an oscilla-

tion from one vertical to one horizontal arm involves quite different coup-

ling between the halves of the oscillating circuit so that it occurs at a

frequency somewhat different from that along a horizontal or vertical cylin-

der. Since zero-order theory does not include the effects of coupling, it

cannot distinguish between the two cases. It is the first-order terms that

take account of mutual interaction.

Sample first-order distributions of current and charge per unit

* length on three different, thin-cylinder crosses are shown in Figs. 19 through

21. Specifically, in Fig. 19, k(h1 + h2) - 4f + 2f - 6n, an antiresonant
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length with a minimum of current and a minimum of charge per unit length at

the junction, kz - 0. Since kt1 - ki2  Y w, each side arm is individually

self-resonant, but is only weakly excited owing to the minimum of charge per

unit length at the junction. Note that the maximum of I (x) on the horizon-x

tal arms is less than 0.02 of the maximum of I (z) on the vertical member.z

In Fig. 20, k(h1 + h2) = 3w + w = 4n, again an antiresonant length but now

with a current maximum and a charge minimum at the junction. Since again

k-1 - k£2 - i, the side arms are self-resonant but are only weakly excited

owing to the relatively small charge at the junction. Almost all of the

large current in the vertical cylinder continues through the junction with

very little entering the side arms. In Fig. 21, k(h1 + h2) = 5w, a resonant

length with a minimum of current and close to a maximum of charge per unit

length at the junction, kz - 0. With k 1 = k£2 - n, each side arm is indi-

vidually self-resonant and is now strongly excited by the large charge at the

junction. As a consequence, the maximum of Ix (x) is almost as great as the

maximum of I (z). Measured currents and charges per unit length on electri-z

cally thin crossed cylinders over a ground plane are shown in Reference 19. They

are in general agreement with the graphs in Figs. 19 through 21, but are not

directly comparable since they involve the image of the cross. In general,

when the incident electric field is parallel to the vertical cylinder, the

currents excited in the side arms are largest when these are individually

self-resonant and are located at a charge maximum in the standing-wave dis-

tribution along the vertical conductor.
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SECTION VII

INTERSECTING ELECTRICALLY THICK CYLINDERS; ka > 0.1

When intersecting cylinders are not electrically thin, the simplifying

approximations that are permitted when ka < 0.1 and that underlie thin-cylin-

der theory are invalid. The concepts of a total axial current and a charge

per unit length are not useful since the zero-order, rotationally symmetric

components contribute only fractionally to the surface densities and even for

them the electrically large cross section introduces highly significant phase

differences in the interaction of the elements of current and charge distri-

buted around a circumference due to the finite velocity of propagation of

electromagnetic effects. These are negligible when ka << 1 so that the cur-

rents and charges can effectively be treated as though concentrated along the

axis for purposes of calculating fields. Furthermore, transverse components

of current and associated charges (which are ignored in thin-cylinder theory

because they are negligible when ka << 1 and kh > 1) are very important with

E-polarization and completely dominate with H-polarization as ka approaches

and exceeds one. There is no way of determining either the transverse varia-

tion of the axial current or any part of the transverse current from thin-

cylinder theory.

The conditions on the currents and charges at the intersection of thin

cylinders are expressed in terms of fictitious, rotationally symmetric, total

currents and charges per unit length at a junction that has so small a sur-

face area that its shape and the charges on it can be ignored. The thin-cyl-

inder junction conditions are designed to give the correct currents and charges

per unit length at distances of a radius or two from the junction, but they

provide no detailed information about the current and charge densities very

near to and on the surfaces of the junction. Actually, they have no valid

application when ka is not quite small. The absence of rotational symmetry

in the axial currents, the presence of significant transverse currents, the

fact that the surface area of the junction region itself is not electrically

small and carries large currents and charges, and the dependence of the sur-

face density of charge on the spatial rates of change of both axial and trans-

verse components of current all combine to make the thin-cylinder junction

conditions meaningless when ka > 0.1. The conditions at the junction of elec-

trically thick cylinders are contained in the general requirement that the

component of the electric field tangent to all parts of the perfectly conduct-
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ing surfaces of the junction vanish. In the sharp grooves at the junction

lines of the intersecting tubes the component of the electric field perpendi-

cular to the surface must vanish since the normal to one of the intersecting

surfaces has a component tangent to the other surface. It follows that the

charge density along the bottoms of the grooves must be zero and with it the

component along the groove of the vector surface density of current. Thus, this

latter must be directed perpendicularly across each groove. These conditions

actually apply equally to intersecting electrically thick or thin cylinders

and must be used for all values of ka if the distributions of current and

charge on and very near the junction are to be determined. When ka << 1, a

knowledge of these distributions is not required to determine the total rota-

tionally symmetric currents and charges per unit length not too close to the

junction.

No analytical or numerical determinations of the surface currents and

charges on intersecting electrically thick cylinders are available. However,

extensive measurements of these quantities have been reported in References

20 and 21. They include three lengths for the horizontal cylinder and two lo-

cations along the vertical tube. Graphs of both the axial and transverse

components of current density and of the charge density are available for

ka - 1 and ka - 2. Representative and very instructive examples for ka - I

are in Figs. 22 and 23 which show contour maps of the surface densities of

charge, respectively, on the vertical and horizontal cylinders when the

length of the former above the ground plane is kh = 3.5n, kLI - kt2 = 2i, and

the junction of the intersecting axes is at khI a 2.5i. The axial standing-
wave patterns on the illuminated (9 - 180*) and shadowed (e = 0*) sides are

clearly shown in Fig. 24 when kt = , khI M 2.5ff and when ki - 1.5n with kh1

- 21. For purposes of comparison the distribution along the vertical cylin-

der when isolated is also shown.

These illustrations and numerous others for the phases and amplitudes

of the surface densities of current and charge in References 20 and 21 lead to

the following general conclusions for intersecting cylinders with ka > 1:

1) The distributions of current and charge densities are much less sensitive

to changes in the lengths of the cylinders when they are electrically thick

than when electrically thin. 2) The distribution of the charge density on an

electrically thick cylinder is more sensitive to the nature of the incident
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field and the presence, dimensions, and location of an intersecting cylinder

than is the distribution of current. 3) The charge density on the vertical

member when excited by an incident E-polarized field has significantly differ-

ent distributions when the incident field is not plane, when the horizontal

member is absent, its location is changed, or when the arm lengths are varied.

The current density is much less affected. 4) The distribution of the charge

density on the horizontal cylinder in an H-polarized field is insensitive to

the location of its intersection with the vertical member of the cross so

long as the arms are equal in length. On the other hand, the amplitude of

the axial standing-wave pattern as a function of e is sensitive to the length

of the arms. 5) As on the single cylinder, the axial current density on the

vertical cylinder is substantially a superposition of forced and resonant

components. The changes from the distribution along the single tube when an

intersecting cylinder is present in different locations and with different

arm lengths are due primarily to shifts in the relative phases of the forced

and resonant components.

When ka - 2, the transverse distributions are significantly more compli-

cated since transverse Fourier components of order 2 are large in addition to

those of orders 1 and 0. The axial distributions are very similar to those

with ka - 1. Sample distributions of the surface density of charge on the

vertical cylinder with kh = 3.5! are in Fig. 25, on the horizontal cylinder

with ki - 27 in Fig. 26. The intersection of the axes is at khI = 2.5w.

Additional graphs are in Reference 21.

In general the distributions of current and charge on the surfaces of

intersecting electrically thick cylinders are quite similar to those on each

of the individual cylinders alone in the same field. The relative amplitudes

of the standing waves on the illuminated and shadowed sides of the vertical

cylinder may differ considerably, but the standing-wave patterns are signifi-

cantly changed only quite near the junction region. Thus, a knowledge of the

distributions of current and charge density on single cylinders is of great

value in the understanding and interpretation of these quantities on inter-

secting cylinders and in the rough approximation of their actual values.
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SECTION VIII

INTERSECTING ELECTRICALLY THICK CYLINDER (ka- 1)
AND FLAT PLATE (BASED ON REFERENCE 22)

When the horizontal cylinder in the cross in Fig. 1 is replaced by a

flat plate as shown in Fig. 27, an improved model of an aircraft is achieved.

However, there are no available analytical or numerical determinations of the

surface densities of current and charge induced on the surfaces of this struc-

ture when illuminated by a plane wave. Indeed, these quantities have not

been evaluated for a single flat plate or strip of finite length. Fortunate-

ly, measured data are at hand, from Reference 22, for a cross that is erected on

a ground plane and illuminated by a normally incident plane wave with the

electric vector along the axis of the vertical cylinder. The measured data

apply to a cylinder with kh - 3.5w and ka - 1, with a horizontal intersecting

plate that has equal arms. Each of the two flat plates has the electrical

length kZ - 1.5n so that it extends to k(I + a) - 1.82w from the vertical

axis; the electrical width of the plate is kL = 0.5w, its thickness is kT -

0.054n.

The magnitude of the measured charge density n(e,z) on the cylinder is

presented in the contour diagram of Fig. 28. This shows a standing-wave pat-

tern very much like that on the cylinder when alone. The effect of the hori-

zontal plate is very small except in its immediate vicinity where a deep min-

imum surrounds it. The corresponding diagram for the charge density r(x,z)

on the flat plate is shown in Fig. 29 for the illuminated side. The diagram

for the shadowed side is in Reference 22. It is not shown here since it differs

little from Fig. 29. Note that the standing-wave pattern along the edges has

maxima (of opposite sign) at the corners and a half-wavelength from them.

There is a deep minimum along a line increasingly displaced from the center

line toward the trailing edge of the "wing" as the central cylinder is ap-

proached. There is, of course, a null along the groove of the junction line

between the end of the plate where it joins the cylinder.

The current density along the cylinder is predominantly axial except

quite near the open end, where large transverse currents occur. The magni-

tude of Kz (,z) is shown in Fig. 30. The distributions resemble those along

the isolated cylinder and the cylinder with an intersecting cylinder in gen-

* eral form. The effect of the transverse plate is seen to be very small -

even smaller than the effect of a transverse cylinder. The transverse plate
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is excited directly by the incident field which is H-polarized for it. The

plate is wide enough so that Kz (x,z) is significant. Its magnitude on the

illuminated and shadowed sides is shown in Fig. 31 as a function of k(x - a)

at seven values of kz spaced across the width of the plate. It is seen to be

zero at the junction with the cylinder and to increase very gradually to

large values at the open edge. It is substantially greater cn the illuminated

side than in the shadow. The magnitude of the associated component Kx (x,z)

is shown in Fig. 32, also as a function of k(x - a). This is seen to have a

standing-wave pattern to match that for the charge density in Fig. 29. The

outward current has a maximum across the grooves at the junction and at a

half-wavelength out toward the open edge, where it vanishes. The amplitude

of Kx (x,z) as a function of kz is greatest at the long edges where kz - 2.5w

± 0.25w and smallest along the center of the plate. More complete data, in-

cluding graphs of the phases, are in Reference 22.
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SECTION IX

NON-ORTHOGONALLY INTERSECTING CYLINDERS

The determination of the currents and charges on the surfaces of conduc-

tors that intersect at angles A other than 900 either as a continuing cross as

in Reference 16 or to achieve the swept-wing configuration in Fig. 33 can be

accomplished for electrically thin cylinders by a generalization of the ana-

lytical procedure described for orthogonal conductors. All of the thin-cyl-

inder conditions previously imposed when A = 900 must he satisfied and, in

addition, a restriction on the angle of intersection A must be enforced.

This is needed in order to keep the junction region electrically small enough

to preserve the validity of the assumption that the total charge on its sur-

faces is negligible. The new condition is:

Isin Al >> ka (42)

where A is the angle between adjacent arms. When A 900, this reduces to

the previously imposed condition, ka - 1.

The integral equations for the currents in the swept-wing configuration

shown in Fig. 33 are derived in the same manner as those for the orthogonal

cross but several additional terms and integrals occur since the crossed con-

ductors are now coupled inductively as well as capacitively. In order to

permit the ready correlation with the equations for the orthogonal cross, the

notation shown in Fig. 33 is used. As before, the vertical member extends

from z - -hI to z - h2 with the junction at the origin. The arms are taken

to be equal and of length Z with the variable s ranging from s - -Z to s - 0

along the left arm and from s = 0 to s - t along the right arm. Note that

when A = 90, s becomes x and the entire notation reduces to that of the or-

tho onal cross.

The boundary conditions requiring the vanishing of the tangential com-

penent of the electric field on the surfaces o = a of the conductors, each

with radius a, now have the form:

Ez(z) = E(i) - ;0(z)/3z - J4Az (z) = 0 ; -h <z < h (43a)

(s) -E(i) cos A - 8 3(s)/3s - JwA3s(s) = 0 ; -Z < s < 0 (43b)
sS) z 3 3



z

2~h

A (Z)
z'
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E( - E cos A - 4 (s)/Ds - JwA 4 s (S) 0 ; 0 < s < 9 (43c)Ci) j E( t

for a normally incident field, (i) E() The time dependence e is
z z

used. A consequence of symmetry is that the currents and charges, and the

vector and scalar potentials on the two side arms satisfy the following re-

lations:

13s(-S) -14s (s) , q3
(s) - q4 (-s) ; A3s (-s) - -A4.Cs) , Y3 (-s) - 4 (s) (44)

ilence, it is necessary to determine only Ilz(z), 2z(z), and I4s(s). With

the relations (44), the vector and scalar potentials in Eq. (43a) are:

Az(z) ( (i0 /4I)( f Iz(Z')K(z,z') dz' + 2 cos A I s ')K(z,s',A) ds'} (45)
h 1 0

h 2

*(z) = ( /41rc 0)( f q(z')K(z,z') dz' + 2 f q(s')K(z,s',A) ds' } (46)
h 1 0

where K(z,z') - e Z/R with R = [(z - z')2 + a211 /2 and K(z,s',A) -z z

e-JkRzs /Rz, with Rz, = [z2 + s12 - 2zs' cos A + a 2I /2 . Similarly, in Eq.

(43c):

A4 s 
(s) - (ul/4n){f Is(S')(K(ss') + K(s,s',A)cos 2Aids'

0
h 2

+ cos A f Iz(Z')K(s,z',A) dz') (47)
-h 

I

h2

.4(s) - (1/4wrc 0 ){f q(s')(1's,s') + K(s,s',A)Ids' + f q(z')K(s,z',A) dz'}
o -h l (48)

-kR s ( ' 2 + a1 ~ ' A -jkR ss /R s

where K(s,s') - e /Rs with R. (Cs 2 + a 2, Ys ss',A) e-JkRs,

= 2 + ,12 _ ,s 1  Os~ 2 1/2 -k Z
with Rss, - s ss cos 26 + a and K(s,z',A) - /Rsz,

with R sz , [ 2 + Z12 _ 21slz' cos L *- a2] /2 . When Eqs. (45)- (48) are sub-

stituted in Eqs. (43a) and (43c), the following simultaneous intepral equations
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in the currents and charges are obtained:

h 2 1

f I~ (z')K~z,z') dz' + 2 cos A I i s(s')K(z,s',A) ds'
-h 0

2h2
-(jw/k )(3/3z)[ [ q(z')K(z,z') dz

t + 2 fq(s')!K(z,s',A) ds']
-h 0

=-j1/wj) Mi (49)

f. s (s')(K(s,s') + K(s,s',A)cos 2A]ds' +~ cos A I I (z')K(s,z',A) dz'

- (w/k )0/3s){f q(s')[K(s,s') + K(s,s',A)]ds' + Iq(z')K(s,z',A) dz'}

0 -h1I

-(j4rr/tj )M Cs A(50)
-' 0 ~z

With 3/3z - -3/3z' in K(z,z'), 1/3s - -3/Ws in K(s,s'), I/as = 3/1s' in

K(s,s',A), and integration by parts, it follows that:

h 2

jw(3/3z) f q(z')K(z,z') dz' -- jw~q(h.,)K(z 1h2) - q(-h 1 )K(z,-h 1)

1-h 1Z~'/z ]1X(z,z') dz' (51)

jwO/las) f q(s')[K(s,s') + K,(s,s',A)]ds' - Jwq(Z)(K~sL) - sA)

0

-3 f j(~ s')/3s 1[1EK(s,s') - K~s,s',A)Ids' (52)
0

With these expressions, the integral equations (49) and (50) becom~e:

2 2IiZI)/az 
2 + k 21 (z')JK(z,z') dz' F F(zA) - F (Z) - F(ZA)

j~ik (iM (53)

-' 
w 0  z

34



(a EI s(s')/as'2 + k I (s')][YK(s,s') -K(s,s',A)Ids' - F2 (s,tA) - F3 S'AO
0

F F(s,A) - F (s,A) =-;- E Ccos A (54)

where

9-
F 2(z,A) - 2jw(a/3z) f q(s')K(z,s',A) ds' (55a)

0

F3C(Z) - -jw(h 2)K(z,h 2) q(-h 1)K~z,-h 1) (55b)

F (z,A) - 2k2 Cos A I (s')K~z,s',A) ds' (55c)

and
h2

F2(s,A) - JwO/as) f q~z')K(s,z$,A) dz' (56a)

F 3(s,A) -2jwq(t)(K(s,L) - K(s,I,A)] (56b)

F 4(s,A) -kCos Af I z(z')K(s,z',A) dz' (56c)

F5C(s,0A) - Cl( + cs2)f I s s')K(s,s',A) ds' (56d)
0

With electrically thin conductors, the real parts of the kernels K(z,z')

and K(s,s') have very sharp peaks at z' - z and s' - s so that

(a /az 2+ k 2)1 Cs() Ak2+ T (F1C(z) +F 2 (z,A) +F I(z) +F 4 (z,A)] 57

2 2+ k2  ++Ca /as +k)I s(s) Ak' Cos A+T(F (s,A) +F 2 (sA) +F 3 (sA)

+ F 4 s,A) + F 5CsA)] (58)

where
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h2

Fl(Z) (J 2 12(Z')/z2 + k21 z')]K (zz') dz' (59)
-h 1

FI(sA)= - f 32s')/as'2 + k2I1 (s')][KI(s,s') - KI(s,s',A)]ds' (60)

0s

and
h 
2

IF- I KR(O,z') dz' = 2[tn(2/ka) -0.5772] (61a)
-h 1

or

IV - f [KR(O,s') - KR(O,s',A)]ds' = KR(O,s') ds' = 2[tn(2/ka) - 0.5772]
0 (61b)

The value of ' in Eqs. (61a,b) is valid when kh, ! w/2, kh 2 > /2, kZ > w/2.

In Eqs. (57) and (58), A--(j4w/wu0o')E M . (-J/60wr')(Ezu)X) where X is the

wavelength.

The solutions of Eqs. (53) and (54) include the simple solutions of the

homogeneous equations and sums of particular integrals. The formulas for the

currents are:

Il(z) - A(C cos kz + C" sin kz + 1 + lh~zA)/] ; -hl < z < 0 (62a)

2(z) -ACC kz + sin kz + 1 + Hh(z,A)/ 0 < z < h2 (62b)I2z(Z 2 A[2 cos kz+ - -2

1 s - 3 (-S) - A[C" cos ks + C" sin ks + (1 - cos ks)cos A

+ H t(s,A)/T] ; 0 < s < z (62c)

where the particular integrals occurring on the right are evaluated with the

formula:

-1 z
Ti(z) - k f Fi(u)sin k(z - u) du (63)

0

2
Specifically for F1 (z), Fi(u) - Ak . This gives TI(z) - 1 - cos kz. The

term cos kz can be incorporated with C' cos kz, leaving 1 as in Eq. (62a).

For F1(s,A), Fi(u) - Ak2 cos A and Eq. (63) gives TI(sA) - (1 - cos ks)cos A

as shown in Eq. (62c). The terms Hh(z,A) and HY(s,A) contain the other
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4
particular integrals. Specifically, H h(zA) T I(z) + I T i(z,A) and

5 . 1-2
HE(sA) - I T 1(s,A) where T is given by Eq. (63). F 1(z) and F 1(s,A) are

given by Eqs. (59) and (60); F 1Cz,A) and F 1(s,A) with i > 1 are given by Eqs.

(55a-c) and (56a-d). The C's are arbitrary constants to be evaluated from

the end and junction conditions. The charges per unit length corresponding

to Eqs. (62a-c) are obtained with the equation of continuity, aI (z/az +z
jwq(z) -0 and aI (s)/as + jwq(s) - 0. They are:

q()- (-JAk/w) (C! sin kz - C" cos kz JU '(z,A)/WT] (64a)

q()- (-JAk/w)[C2 sin kz - C" cos kz jHI(z,A)/w'P] (64b)

q (s) - q3(s (-JAk/w)(C~ sin ks - Cis cos ks -JH1,(s,A)/w'f] (64c)

where H' is the derivative with respect to the argument kz or ks.

Since Hh~(0,A) and 11,(0,A) vanish at z - s - 0, they are not involved in

the application of the junction conditions, I~ -z(0 1 2z(0) - 21 4s(0) 0 and

q (0) -q 2 ( - q3 O - q 4 (0. These give C" - C" C" -C11" C" and
1 () 30 ()1 2 3 4

C' C' -2C4 - 0. The end conditions, I lz(-h) I- I 2z(hb2  . I 13s(t) Is(t

- 0, must be applied to whatever order of solution is required. For a zero-

order solution, they give

[I(- A[C I cos kh1  C" sin kh1 + 1) - 0 (65a)

(I2Z(h2)] AfC cos kh + C"sin kh + 1] -0 (65b)

(I 4(L) 0 .-[ ~(3s(-L)J0 - A(C4 cos kk + C" sin kL + (1 - cos kI)cos A]- 0

(65c)
N.

These equations can be solved for C' 1 - 1, 2, 4, in terms of C" and

substituted in C' -.C' - 2C4' 0 to obtain:

sec kh 1- sec kh 2- 2(l - cos kt)sec kL cos A

Cer tan kh 1+ tan h+2takL(6
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Once C' and CV have been determined, the zero-order currents are known. They

are:

(I l~z~- -AW{sin k(h 1 + z) + sin k(h 2 - z) -sin k~h 1 + h 2) + 2 cos kh 2

x [tan kt (cos kz - cos kh) + cos A (1 - cos kI)sec kI

xsin k(h 1 + Z)]1 ( 67a)

[I~ ~ -zzl AW~sin k(h 1 + z) + sin k(h 2 - z) -sin k(h I + h 2) + 2 cos kh

x (tan k2. (cos kz - cos kh ) - cos A (1 - cos kI)sec ki

x sin k(h2 - z)] (67b)

[I s()I AWse k~co I co kh2 )sin k(X s) -cos A sin k(h I + h 2 )

x(cos ks-O co d) -2 cos A cos kh Icos kh (sin k(t - s)

+ sin ks - sin kill (67c)

where

W - (sin k~h 1 + h 2) + 2 tan ki cos kh 1 cos kh 2
1  (68)

Note that I 3s(-S) - -I4s (s). With A - 90% these expressions reduce to those

previously obtained for the currents in an orthogonal cross when Z 1 £ 2 a -

The zero-order charges per unit length corresponding to the currents in Eqs.

(67a-c) are:

[q(1 (-JkAW/w){cos k(h1 + z) - cos k(h2  z) - 2 cos kh2 (tan kt sin kz

-cos A (1 - cos kt)sec k2. cos k(h1 + z)]l (69a)

(q 2z)]O (-JkAW/w){cos k(h, + z) - cos k(h 2 -z) - 2 cos kh1 (tan kt sin kz

-cos a (1 -cos kt)sec k2. cos k(h 2 -z)]} (69b)
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[q4 -1 (-JkAW/w cos kL){(cos kh 1 - cos kh 2)cos W~ - s) - cos

x sin k(h 1 + h 2)sin k~s + 2 cos A cos kh 1cos h (cos ks

- cos MLt - s)] (690)

Note that q 3 (-s) - q 4(s) and that, with i - 1, ... , 4, the charge per unit

length on each conductor at the junction is:

Iq(01 = -JkAW/w){cos kh, - cos kh2 + 2 cos A cos kh, co kh 2 (1 - cos kl)

X sec Id) (70)

The effect of the presence of the side arms is especially significant

when their electrical length kL. is wt/2 or it. Although the zero-order formu-

las for the currents and charges per unit length are not quantitatively ac-

curate when kh1, kh 2 and k9. are all integral multiples of w/2, it is possible

to obtain useful, relatively simple, expressions when k1 is wr/2 or w but kh1

and kh 2are not. Thus, when k1 - w/2, tan kL - - and from Eq. (68), W -

1/(2 tan kL cos kh 1 cos kh 2). If this is used in Eqs. (67a-c) and (69a-c),

finite zero-order currents and charges per unit length are obtained. They

are:

[I 1 (z)]0 - -A sec kh 1 (cos kz - cos kh I + Cos A sin k(h 1 + W)]

-h < z <0 (71a)

(12z(z)l l - -A sec kh 2 (cos kz - cos kh 2 - cos A sin k~h 2  W z)

0< z <h 2  (71b)

csos kh, - cos kh 2 - Cos A sin k(h, + h 2)
(I 4s~ 1 0 2 cos kh 1 cos kh 2 OB ks

- cos A (cos ks + sin ks - 1l)} ; 0 < oc<t (71c)

[q 1(j)O kA/w coo kh ) (sin kz + cos A cos k(h 1 + W) -hl z <0 (72a)
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[q 2 (z)]o - (jkA/w cos kh 2 ) [sin kz + cos A cos k(h2 - z)] ; 0 < z (72b)

[{ cos kh I - cos kh2 - cos A sin k(h I + h2) sin
4(s)]O - (Jl)2 cos kh cos kh 2

+cos A (cos ks - sin ks) ; 0 < s < (72c)

These formulas reveal that when low-impedance arms with kt - w/2 are

attached to the vertical member, they completely suppress the zero-order cur-

rents and charges that are induced in it in the absence of the arms. These

are given by the first three terms in Eqs. (67a) and (67b), the first two

terms in Eqs. (69a) and (69b). When A - 90, the amplitude of the currents

in the horizontal arms is determined by the discontinuity in the vertical

current at the junction, viz., Isec kh2 - sec kh1f. This can range from zero

to two, depending on the values of khI and kh2. When A 4 90, the vertical

arms carry additional, oppositely directed currents that continue into the

side arms. Also induced in the side arms are currents that are independent

of the vertical member and simply oscillate in each arm. For example, in

arm 4 the added current has the form cos A (cos ks + sin ks - 1) which is

zero at s = 0 and at s - L and has associated with it a charge per unit

length with the form cos A (cos ks - sin ks). This has the magnitude cos A

at both s - 0 and s - .

When k1 - v, tan kX - 0 and W - 1/sin k(h1 + h2 ). It follows that the

zero-order currents and charges are:

(I lz(Z)] 0 - -A[sin k(h1 + z) + sin k(h2 - z) - sin k(hI + h2) - 4 cos A

x coo kh2 sin k(h1 + z)]/sin k(h1 + h2) (73a)

1 [ z()]o - -A[sin k(h1 + z) + sin k(h2 - z) - sin k(hI + h2 ) + 4 cos A

x cos kh1 sin k(h2 - z)]/sin k(h1 + h2) (73b)

[14s = -A[(cos kh1 - cos kh2 - 4 cos A cos kh1 cos kh2 ]

x sin ks/sin k(h I + h2) - cos A (cos ks + 1)) (73c)
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(q(z)O . (-JkA/w)[cos k(h 1 + z) - cos k(h 1 - z) - 4 cos A cos kh2

x cos k(h 1 + z)]/sin k(h1 + h2) (74a)

(q 2 (z)]o - (-jkA/w)[cos k(h I + z) - cos k(h1 - z) - 4 cos A cos kh1

x cos k(h2 - z)]/sin k(h1 + h2) (74b)

[q4 (s)]0 . (-JkA/w){([cos khI - cos kh2 - 4 cos A cos khI cos kh2]

x cos ks/sin k(h1 + h2) + cos A sin ks} (74c)

These are quite different from those with kX - w/2. When kZ - ff and A n 900,

the zero-order currents and charges per unit length on the vertical member

are actually the same as when the side arms are absent. The zero-order cur-

rents on the horizontal members vanish at the junction; they oscillate in the

self-resonant mode, excited by the charges maintained at the junction by the

vertical currents. These are proportional to Icos khI - cos kh21. When A

90, additional, oppositely directed currents are induced on the vertical

members and these continue into the side arms where they are distributed as a

shifted cosine, (1 + cos ks)cos A. There is also an added term in the self-

resonant current proportional to sin ks.

More accurate currents and charges per unit length can be obtained for

all arms and lengths by evaluating the first-order terms obtained by the sub-

stitution of the zero-order currents and charges in the particular integrals

contained in Hh(z,A) and H (s,A). Since they cannot all be evaluated analyti-

cally, numerical integration is necessary. The first-order terms are needed

especially when khI and kh2 are integral multiples of i/2.

The formulas derived for the currents on the swept-wing cross are useful

only within the limits of thin-cylinder theory and when kh1 > 1, kh2 5 1, and

kI > 1. When one or more of the arms is electrically short, the rotationally

symmetric part of the current does not dominate. The transverse Fourier com-

ponents of the first order with a transverse variation cos e ultimately dom-

inate as ka is reduced. The surface currents associated with this mode are

readily determined as explained in an earlier section. They are proportional
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to the local tangential magnetic field on each conducting surface and require

no end or junction conditions.

The distributions of current and charge per unit length can be deter-

mined on the swept-wing structure for other than normally incident fields in

the general manner described for the orthogonal cross with equal arms. This

is true only for electrically thin structures with angles that satisfy Eq.

(42). The current and charge densities on swept-wing structures composed of

an intersecting electrically thick cylinder and an electrically wide flat

plate can be studied experimentally in the manner described for A = 90.

.,
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SECTION X

PENETRATION OF FIELDS INTO THE INTERIOR THROUGH AN OPEN END

The intensity of an electromagnetic field that penetrates into the in-

terior of a conducting tube through a small aperture in the cylindrical sur-

face is proportional to the densities of current and charge on the unbroken

surface at the location of the aperture. The calculation of these fields is

treated in References 23 and 24. A closely related but analytically quite

different problem is the field that penetrates into the interior at the open

tubular end or that enters an aircraft through a conductively open, radome-

covered nose. The currents and charges excited by such a field on the inner

surfaces of a tubular cylinder have been calculated directly from the general

analysis of Kao in Reference 1 which provides the current and charge densities

on both the inside and outside surfaces of a tubular cylinder illuminated by

a normally incident field. Examples of the currents on the inside surface

are shown in Figs. 12a and 12b for electrically thin cylinders with ka = 0.05

and 0.01. Although these inside currents decrease exponentially inward from

the open end, they are always equal to the outside currents at the end and are,

therefore, significant even when ka is very small.. hen ka is not small but

is below the cut-off for waveguide modes in the interior, the situation is

quite similar but the distance of penetration with significant amplitude is

greater. This is shown for a tube with ka = 1 in Reference 3 where in Fig. 17

is shown the inside axial current, in Fig. 18 the inside transverse current,

and in Fig. 19 the inside charge density. These are all significant within

distances of the open end comparable with the radius of the tube. len the

inside radius exceeds the cut-off value for a waveguide mode in the interior,

this is excited at the open end as described and discussed in Reference 21.

Since the frequency spectrum contained in an electromagnetic pulse extends

over a wide range of values of ka, the three cases with ka < 0.1,

0.1 < ka < kac, and ka c < ka must be included in a consideration of currents,

charges, and fields inside the open or radome-covered end of a tubular con-

ductor.
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SECTION XI

SUMARY AND CONCLUSION

The currents and charges induced on crossed metal structures by an inci-

dent electromagnetic pulse are best investigated in three frequency ranges.

At very low frequencies when ka < kh < 1, the only significant currents are

those associated with the first-order transverse Fourier component. They are

directly proportional and comparable in magnitude to the component of the in-

cident magnetic field ( tangent to the metal surface. They are readily¢ i d e n t~ ~ Can t i i e d H

determined at each point on the surface since they are independent of all

dimensional parameters. At somewhat higher frequencies when ka < 0.1 and

I < kh < -, the dominant currents and charges are the total axial ones de-

rived from the rotationally symmetrical, zero-order Fourier components, viz.,

I = 2na[K]0 , q = 2na[] 0 . They are governed by the well developed, quasi-

one-dimensional integral equations of thin-wire theory with the associated

end and junction conditions which have strong effects on the axial distribu-

tionb. When ka > 0.1, first- and higher-order Fourier components become im-

portant in the axially directed current density and associated charge density.

In addition, significant transverse currents with associated charges must be

considered. They combine with the axial currents to maintain three-dimen-

sional standing-wave patterns on the surfaces. In general, the distributions

on intersecting conductors are quite similar to those on each member when

isolated in the same incident field except quite near and in the junction re-

gion.
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